Fully printable transparent monolithic solid-state dye-sensitized solar cell with mesoscopic indium tin oxide counter electrode.
نویسندگان
چکیده
We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.
منابع مشابه
Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates
Electrochemical impedance spectroscopy was used to determine the effective charge transfer resistances of porous dye-sensitized solar cell counter electrodes prepared by low-temperature spray deposition and compression of conductive carbon and platinized Sb-doped SnO2 powders on indium tin oxide-coated plastic substrates. The charge transfer resistances were 0.5–2 and 8–13O cm, respectively, wh...
متن کاملTop-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode
We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature-processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. ...
متن کاملOptical Studies and Photovoltaic Performance of Nanocrystalline Titanium Dioxide Sensitized with Local Dye
Nanocrystalline titanium (iv) oxide paste has been deposited on Fluorine doped tin oxide glass substrate by the blade method. The deposited film was subjected to thermal treatment to obtain an electrode foe a photo-electrochemical cell. The electrode was sensitized with prophyrin dye which was a local dye extracted from carica papaya leaves. Avaspec 2.1 spectrophotometer was used to obtain the ...
متن کاملComparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells
Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employin...
متن کاملEnhanced light-conversion efficiency of titanium- dioxide dye-sensitized solar cells with the addition of indium-tin-oxide and fluorine-tin-oxide nanoparticles in electrode films
We prepared of electrodes that consist of TiO2 with addition of tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) nanoparticles and the application of such electrodes on dye-sensitized solar cell. As compared to TiO2 alone, the addition of ITO and FTO nanoparticles resulted in an efficiency improvement of ~ 20% up to ~ 54% for the TiO2ITO and TiO2-FTO systems, respectively. This im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 33 شماره
صفحات -
تاریخ انتشار 2014